3,707 research outputs found

    Multi-bot Easy Control Hierarchy

    Get PDF
    The goal of our project is to create a software architecture that makes it possible to easily control a multi-robot system, as well as seamlessly change control modes during operation. The different control schemes first include the ability to implement on-board and off-board controllers. Second, the commands can specify either actuator level, vehicle level, or fleet level behavior. Finally, motion can be specified by giving a waypoint and time constraint, a velocity and heading, or a throttle and angle. Our code is abstracted so that any type of robot - ranging from ones that use a differential drive set up, to three-wheeled holonomic platforms, to quadcopters - can be added to the system by simply writing drivers that interface with the hardware used and by implementing math packages that do the required calculations. Our team has successfully demonstrated piloting a single robots while switching between waypoint navigation and a joystick controller. In addition, we have demonstrated the synchronized control of two robots using joystick control. Future work includes implementing a more robust cluster control, including off-board functionality, and incorporating our architecture into different types of robots

    Apparent sharpness of 3D video when one eye's view is more blurry.

    Get PDF
    When the images presented to each eye differ in sharpness, the fused percept remains relatively sharp. Here, we measure this effect by showing stereoscopic videos that have been blurred for one eye, or both eyes, and psychophysically determining when they appear equally sharp. For a range of blur magnitudes, the fused percept always appeared significantly sharper than the blurrier view. From these data, we investigate to what extent discarding high spatial frequencies from just one eye's view reduces the bandwidth necessary to transmit perceptually sharp 3D content. We conclude that relatively high-resolution video transmission has the most potential benefit from this method

    That's a rap : the making of an Australian hip hop integrated musical film

    Get PDF
    To date, the majority of films that utilise or feature hip hop music and culture, have either been in the realms of documentary, or in ‘show musicals’ (where the film musical’s device of characters’ bursting into song, is justified by the narrative of a pursuit of a career in the entertainment industry). Thus, most films that feature hip hop expression have in some way been tied to the subject of hip hop. A research interest and enthusiasm was developed for utilising hip hop expression in film in a new way, which would extend the narrative possibilities of hip hop film to wider topics and themes. The creation of the thesis film Out of My Cloud, and the writing of this accompanying exegesis, investigates a research concern of the potential for the use of hip hop expression in an ‘integrated musical’ film (where characters’ break into song without conceit or explanation). Context and rationale for Out of My Cloud (an Australian hip hop ‘integrated musical’ film) is provided in this writing. It is argued that hip hop is particularly suitable for use in a modern narrative film, and particularly in an ‘integrated musical’ film, due to its: current vibrancy and popularity, rap (vocal element of hip hop) music’s focus on lyrical message and meaning, and rap’s use as an everyday, non-performative method of communication. It is also argued that Australian hip hop deserves greater representation in film and literature due to: its current popularity, and its nature as a unique and distinct form of hip hop. To date, representation of Australian hip hop in film and television has almost solely been restricted to the documentary form. Out of My Cloud borrows from elements of social realist cinema such as: contrasts with mainstream cinema, an exploration/recognition of the relationship between environment and development of character, use of non-actors, location-shooting, a political intent of the filmmaker, displaying sympathy for an underclass, representation of underrepresented character types and topics, and a loose narrative structure that does not offer solid resolution. A case is made that it may be appropriate to marry elements of social realist film with hip hop expression due to common characteristics, such as: representation of marginalised or underrepresented groups and issues in society, political objectives of the artist/s, and sympathy for an underclass. In developing and producing Out of My Cloud, a specific method of working with, and filming actor improvisation was developed. This method was informed by improvisation and associated camera techniques of filmmakers such as Charlie Chaplin, Mike Leigh, Khoa Do, Dogme 95 filmmakers, and Lars von Trier (post-Dogme 95). A review of techniques used by these filmmakers is provided in this writing, as well as the impact it has made on my approach. The method utilised in Out of My Cloud was most influenced by Khoa Do’s technique of guiding actors to improvise fairly loosely, but with a predetermined endpoint in mind. A variation of this technique was developed for use in Out of My Cloud, which involved filming with two cameras to allow edits from multiple angles. Specific processes for creating Out of My Cloud are described and explained in this writing. Particular attention is given to the approaches regarding the story elements and the music elements. Various significant aspects of the process are referred to including the filming and recording of live musical performances, the recording of ‘freestyle’ performances (lyrics composed and performed spontaneously) and the creation of a scored musical scene involving a vocal performance without regular timing or rhythm. The documentation of processes in this writing serve to make the successful elements of this film transferable and replicable to other practitioners in the field, whilst flagging missteps to allow fellow practitioners to avoid similar missteps in future projects. While Out of My Cloud is not without its shortcomings as a short film work (for example in the areas of story and camerawork) it provides a significant contribution to the field as a working example of how hip hop may be utilised in an ‘integrated musical’ film, as well as being a rare example of a narrative film that features Australian hip hop. This film and the accompanying exegesis provide insights that contribute to an understanding of techniques, theories and knowledge in the field of filmmaking practice

    An exact theory of interfacial debonding in layered elastic composites

    Get PDF
    AbstractAn exact theory of interfacial debonding is developed for a layered composite system consisting of distinct linear elastic slabs separated by nonlinear, nonuniform decohesive interfaces. Loading of the top and bottom external surfaces is defined pointwise while loading of the side surfaces is prescribed in the form of resultants. The work is motivated by the desire to develop a general tool to analyze the detailed features of debonding along uniform and nonuniform straight interfaces in slab systems subject to general loading. The methodology allows for the investigation of both solitary defect as well as multiple defect interaction problems. Interfacial integral equations, governing the normal and tangential displacement jump components at an interface of a slab system are developed from the Fourier series solution for the single slab subject to arbitrary loading on its surfaces. Interfaces are characterized by distinct interface force–displacement jump relations with crack-like defects modeled by an interface strength which varies with interface coordinate. Infinitesimal strain equilibrium solutions, which account for rigid body translation and rotation, are sought by eigenfunction expansion of the solution of the governing interfacial integral equations. Applications of the theory to the bilayer problem with a solitary defect or a defect pair, in both peeling and mixed load configurations are presented

    Non-autoreducible Sets for NEXP

    Get PDF
    We investigate autoreducibility properties of complete sets for NEXP under different polynomial-time reductions. Specifically, we show that under some polynomial-time reductions there are complete sets for NEXP that are not autoreducible. We show that settling the question whether every complete set for NEXP under non-adaptative reduction is autoreducible under NOR-truth-table reduction either positively or negatively would lead to major results about the exponential time complexity classes

    Suppression of Intensity Fluctuations in Free Space High-Speed Optical Communication Based on Spectral Encoding of a Partially Coherent Beam

    Get PDF
    A new concept of a free-space, high-speed (Gbps) optical communication system based on spectral encoding of radiation from a broadband pulsed laser is developed. It is shown that, in combination with the use of partially coherent laser beams and a relatively slow photosensor, scintillations can be suppressed by orders of magnitude for distances of more than 10 km. We also consider the spectral encoding of radiation from a LED as a gigabit rate solution of the "last mile" problem and rapid-deployment systems for disaster recovery.Comment: 16 pages, 2 figure

    Cohesive fracture of plane orthotropic layers

    Get PDF
    AbstractCrack-like cohesive defect propagation within a plane orthotropic linear elastic layer is considered by assuming that the defect, and its growth under load, can be modeled as the evolving separation along a straight, predetermined nonlinear, nonuniform Needleman-type cohesive interface. The analysis exploits a general form of orthotropy rescaling originally developed for the displacement boundary value problem by Krenk (1979). It is shown that when the material is degenerate orthotropic (i.e., ρ=1, ρ is the orthotropic shear parameter) rescaling enables the determination of solutions from isotropic ones and, when the material is fully orthotropic, rescaling allows for solutions to be obtained from problems with the simpler cubic symmetry. (These are well known attributes of linear static sharp crack analysis, which depend on an alternative form of rescaling the traction boundary value problem (Suo, 1990; Suo et al, 1991).) The procedure is demonstrated by obtaining degenerate orthotropic response from isotropic solutions recently obtained by the authors in an investigation of both solitary as well as multiple cohesive defect interaction problems in layered systems under arbitrary loading (Nguyen and Levy, 2009, 2011). In order to obtain fully orthotropic solutions via rescaling, a novel integral equation formulation is developed based on exact infinitesimal strain elasticity solutions for rectangular domains composed of cubically symmetric media and subject to arbitrary loading. Explicit results are obtained for the simple edge notch bend configuration, chosen so as to shed light on the mechanisms of defect propagation in orthotropic layers. It is demonstrated that increasing the orthotropic stiffness ratio can precipitate a quasi-brittle defect growth response. Furthermore, it is well known that in a number of technically important problem geometries and loadings, static sharp crack solutions are only weakly dependent on shear parameter ρ enabling the estimation of fully orthotropic behavior from isotropic solutions (Suo et al, 1991). This result is shown to be true for nonlinear cohesive fracture analysis of the edge notch bend configuration analyzed in this study

    Scalable Video Streaming for Single-Hop Wireless Networks Using a Contention-Based Access MAC Protocol

    Get PDF
    Limited bandwidth and high packet loss rate pose a serious challenge for video streaming applications over wireless networks. Even when packet loss is not present, the bandwidth fluctuation, as a result of an arbitrary number of active flows in an IEEE 802.11 network, can significantly degrade the video quality. This paper aims to enhance the quality of video streaming applications in wireless home networks via a joint optimization of video layer-allocation technique, admission control algorithm, and medium access control (MAC) protocol. Using an Aloha-like MAC protocol, we propose a novel admission control framework, which can be viewed as an optimization problem that maximizes the average quality of admitted videos, given a specified minimum video quality for each flow. We present some hardness results for the optimization problem under various conditions and propose some heuristic algorithms for finding a good solution. In particular, we show that a simple greedy layer-allocation algorithm can perform reasonably well, although it is typically not optimal. Consequently, we present a more expensive heuristic algorithm that guarantees to approximate the optimal solution within a constant factor. Simulation results demonstrate that our proposed framework can improve the video quality up to 26% as compared to those of the existing approaches
    • 

    corecore